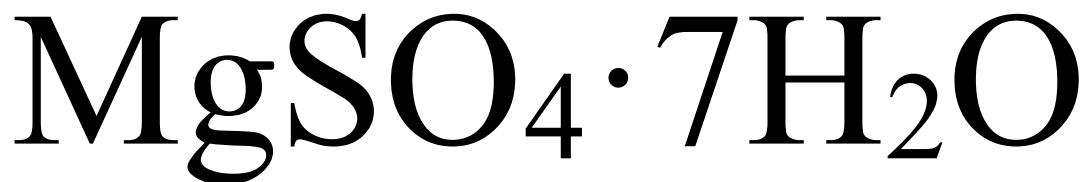


1 Which are polar MOLECULES?
Which exhibit dipole attraction,
which exhibit hydrogen bonding?


2 How many pairs of electrons
are in each of the bonds here?

3 Name all of the bonds in these two compounds...

4 Name all of the bonds in
these compounds...

5 The molecules formed in group 17 are all diatomic, all have single nonpolar covalent bonds, and are all nonpolar molecules; yet two are gases, one is liquid and one is a solid at STP.

Which are gases?

Which is a liquid?

Which is a solid?

What sort of bonding is going on here to explain this?

6 Draw the Lewis Dot Diagrams for


7 Are these molecules
polar or nonpolar?

8 Name all the bonds in these.

9 Name all the bonds in these.

10 Rank the bonds
most polar to least polar...

HCl

HBr

HF

HI

11 Which of these makes only ionic bonds?

HCl

KCl

MgCl₂

NCl₃

SCl₂

NaCl

12 Which of these molecules has radial symmetry?

BONUS

What are the relative oxidation numbers for all atoms/ions here?

BONUS #2

Name the special bonds that are found in these compounds....

Phosphorous Pentachloride
Ozone

Boron Trifluoride
Carbon Monoxide
Janet and Charlie

Something special happens with the bonding in each of these...

(What rules do they break?)

Walk around Practice for Bonding

1. Which are the polar molecules? _____

Which exhibit dipole attraction? _____

Which exhibit hydrogen bonding? _____

2. How many pairs of electrons are being shared in these molecules?

F_2 _____

O_2 _____

Cl_2 _____

N_2 _____

C_2H_2 _____ and _____

HCl _____

NaCl _____

3. Name all bonds in C_2H_2 _____

CS_2 _____

4. Name all bonds in KCl _____

$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ _____

5. Gases are _____ + _____ Liquid is _____ Solid is _____

This is caused by _____

6 Draw Lewis Dot Diagrams for CHBr_3

Draw Lewis Dot Diagrams for CO_2

Draw Lewis Dot Diagrams for O_2

Draw Lewis Dot Diagrams for H_2O

7. Polar molecules are _____ Nonpolar molecules are _____

8. Name all the bonds in... CHBr_3 has C-H _____

and C-Br _____

CO_2 _____

O_2 _____ H_2O _____

Name all of the bonds in.. KCl _____

SiO_2 _____ SCl_2 _____

BF_3 _____

10. Rank these bonds....	most polar → → →	
HCl		
HBr		
HF		
HI		
	least polar → → →	

11. Which of these have ONLY ionic bonds? _____

12. Which of these have radial symmetry? _____

BONUS: Relative oxidation numbers...

B1	MgSO_4	Mg	S	O	O	O	O
B2	CH_4	C	H	H	H	H	
B3	H_2O	H	H	O			
B4	CS_2	C	S	S			
B5	CO_2	C	O	O			
B6	CO	C	O				

BONUS #2

Name the special bonds that are found in these compounds.... (or, what rules do they break?)

Phosphorous Pentachloride

Ozone

Boron Trifluoride

Carbon Monoxide

Janet and Charlie

Walk around Practice for Bonding... answers are on Arbuiso.com

1. Which are the polar molecules? H_2O CHCl_3 SCl_2

Which exhibit dipole attraction? SCl_2

Which exhibit hydrogen bonding? H_2O CHCl_3

2. How many pairs of electrons are being shared in these molecules?

F_2 one

O_2 two

Cl_2 one

N_2 three

C_2H_2 three and one

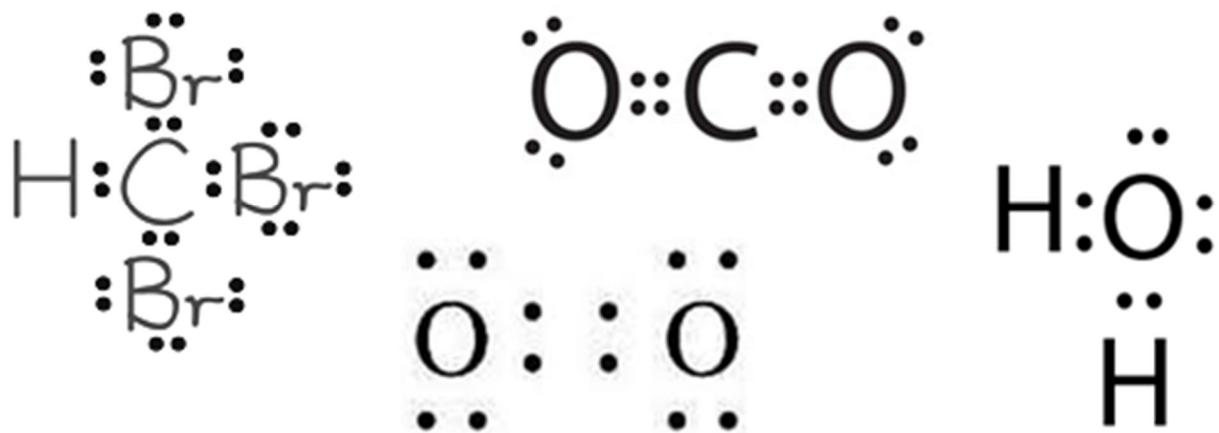
HCl one

NaCl none are shared in an ionic bond

3. Name all bonds in

C_2H_2 The C to C bond is triple nonpolar covalent, the C to H bond is single polar covalent

CS_2 The C to S bonds are both double NON polar covalent (same electronegativity, no guessing)


4. Name all bonds in KCl Just ionic

$\text{MgSO}_4 \cdot 7\text{H}_2\text{O}$ Here, Ionic, polar covalent, hydrogen bonds, and single polar covalent bonds too.

5. Gases are $\text{F}_2 + \text{Cl}_2$ Liquid is Br_2 Solid is I_2

This is caused by the intermolecular attraction known as electron dispersion attraction

Draw Lewis Dot Diagrams for CHBr_3 CO_2 O_2 H_2O

7. Polar molecules are CHBr_3 and H_2O

Nonpolar molecules are CO_2 and O_2

Name all the bonds in... CHBr_3 has C-H single polar covalent and C-Br single polar covalent

CO_2 double polar covalent

O_2 double nonpolar covalent

H_2O two single polar covalent

SiO₂ two double polar covalent
BF₃ three single polar covalent

10. Rank these bonds....	most polar → → →	HF	Greatest difference in electronegativity	
HCl	HBr	HF	HCl	
		HI	HBr	
		least polar → → →	HI	Least difference in electronegativity

11. Which of these compounds have ONLY ionic bonds? KCl, MgCl₂ and NaCl

12. Which of these molecules have radial symmetry? C_2H_4 CO_2 CS_2 CCl_4

BONUS: Relative oxidation numbers...							
B1	MgSO_4	Mg^{+2}	S^{+6}	O^{-2}	O^{-2}	O^{-2}	O^{-2}
B2	CH_4	C^{+4}	H^{-1}	H^{-1}	H^{-1}	H^{-1}	H^{-1}
B3	H_2O	H^{+1}	H^{+1}	O^{-2}			
B4	CS_2	C^{+4}	S^{-2}	S^{-2}			
B5	CO_2	C^{+4}	O^{-2}	O^{-2}			
B6	CO	C^{+2}		O^{-2}			

BONUS #2:

PCl₅ breaks the octet rule (too big)

O₃ Ozone breaks the octet rule with the resonating bond

BF₃ breaks the octet rule by not getting an octet

CO breaks the octet rule by having a double polar covalent bond & a coordinate covalent bond.

Janet and Charlie do not break any rules. They are bonded by IONIC LOVE.