Walk around Practice for Bonding... answers are on Arbuiso.com

1. Which are the polar molecules? H₂O CHCl₃ SCl₂

Which exhibit dipole attraction? SCl₂

Which exhibit hydrogen bonding? H₂O CHCl₃

2. How many pairs of electrons are being shared in these molecules?

 F_2 one O_2 two Cl_2 one N_2 three

C₂H₂ three and one HCl one NaCl none are shared in an ionic bond

3. Name all bonds in

C₂H₂ The C to C bond is triple nonpolar covalent, the C to H bond is single polar covalent

CS₂ The C to S bonds are both double NON polar covalent (same electronegativity, no guessing)

4. Name all bonds in

KCl Just ionic

MgSO₄·7H₂O Here, Ionic, polar covalent, hydrogen bonds, and single polar covalent bonds too.

5. Gases are $F_2 + Cl_2$ Liquid is Br_2 Solid is I_2

This is caused by The intermolecular attraction known as electron dispersion attraction

Draw Lewis Dot Diagrams for CHBr₃ CO₂ O₂ H₂O

7. Polar molecules are CHBr₃ and H₂O

NONPolar molecules are CO₂ and O₂

8. Name all the bonds in... CHBr₃ has C-H single polar covalent and C-Br single polar covalent

CO₂ double polar covalent

O₂ double nonpolar covalent

H₂O two single polar covalent

9. Name all of the bonds in..

KCl ionic

SiO₂ two double polar covalent

SCl₂ two double polar covalent BF₃ three single polar covalent

10. Rank these bonds		$most\ polar\ \longrightarrow \longrightarrow \longrightarrow$		HF	Greatest difference in electronegativity
HCl	HBr	HF	НІ	HC1	
	пвг			HBr	
	least polar $\rightarrow \rightarrow \rightarrow$			HI	Least difference in electronegativity

- 11. Which of these compounds have ONLY ionic bonds? KCl and MgCl₂ and NaCl
- 12. Which of these molecules have radial symmetry?

 C_2H_4

 CO_2

CS₂ CCl₄

BONUS: Relative oxidation numbers...

B1	MgSO ₄	Mg^{+2} S^{+6} O^{-2} O^{-2} O^{-2}
B2	CH ₄	C ⁺⁴ H ⁻¹ H ⁻¹ H ⁻¹
В3	H ₂ O	H^{+1} H^{+1} O^{-2}
B4	CS_2	C^{+4} S^{-2} S^{-2}
B5	CO_2	C^{+4} O^{-2} O^{-2}
В6	СО	C^{+2} O^{-2}

BONUS #2:

PCl₅ breaks the octet rule (too big)

O₃ Ozone breaks the octet rule with the resonating bond

BF₃ breaks the octet rule by not getting an octet

CO breaks the octet rule by having a double polar covalent bond & a coordinate covalent bond. Janet and Charlie do no break any rules, they are bonded by IONIC LOVE.