Practice Problems for Solutions ANSWERS

Solution Molarity	Number of grams solute	Solute formula	Volume in mL
(1)	1345 g	CaCl ₂	3260 mL
1.05 M	(2)	$AgNO_3$	25.0 mL
5.92 M	424.0 g	NH ₄ Cl	(3)

1. Molarity =
$$\frac{1345 \text{ g CaCl}_2}{1} \quad \text{X} \quad \frac{1 \text{ mole CaCl}_2}{110 \text{ grams CaCl}_2} = 12.23 \text{ moles}$$
$$\frac{12.23 \text{ moles}}{3.260 \text{ Liters}} \quad = 3.752 \text{ Molarity} \quad 4 \text{ SF}$$

2.
$$1.05 \text{ M} = \frac{\text{X moles AgNO}_3}{0.025 \text{ Liters}} = (1.05 \text{ M})(0.025 \text{ L}) = \text{X moles AgNO}_3$$

= $0.0263 \text{ moles AgNO}_3$ (3 SF)

$$\frac{0.0263 \text{ moles AgNO}_3}{1} \quad \textbf{X} \quad \frac{170 \text{ grams AgNO}_3}{1 \text{ mole AgNO}_3} \quad = 4.46 \text{ grams AgNO}_3 \quad (3 \text{ SF})$$

3.
$$\frac{424.0 \text{ g NH}_4\text{Cl}}{1} \times \frac{1 \text{ mole NH}_4\text{Cl}}{53 \text{ grams CaCl}_2} = 8.000 \text{ moles (4 SF)}$$

$$5.92 \text{ M} = \frac{8.000 \text{ moles NH}_4\text{Cl}}{\text{X Liters}}$$

$$(5.92 \text{ M})(\text{X Liters}) = 8.000 \text{ moles}$$
 $X \text{ Liters} = \frac{8.000 \text{ moles}}{5.92 \text{ M}} = 1.35 \text{ liters}$ (3 SF)

$$1.35 L = 1350 mL$$

4. How do you prepare 125.0 mL of 0.625 M NaCl_(AQ) from a stock solution of 3.00 molarity?

$$M_1V_1 = M_2V_2$$
 (3.00 M)(V₁) = (0.625 M)(125.0 mL) $V_1 = 26.0$ mL stock (3 SF)
125.0 mL total - 26.0 stock solution = 99.0 mL water

5. How do you prepare 6.75 mL of 1.14 M KCl_(AO) from a stock solution of 4.70 molarity?

$$M_1V_1 = M_2V_2$$
 (4.70 M)(V₁) = (1.14 M)(6.75 mL) $V_1 = 1.64$ mL stock (3 SF)
6.75 mL total - 1.64 mL stock = 5.11 mL water

6. What is the concentration in parts per million when 164 grams of mercury is mixed into a pond of 120,150 liters?

$$PPM = \frac{\text{grams of mercury}}{\text{grams of solution}} \quad X \; 1,000,000 = \frac{164 \text{ g Hg}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,000,000 = \frac{1.36 \text{ PPM}}{120,150,000 \text{ g solution}} \quad X \; 1,0$$

7. Benzene (C₆H₆) is a carcinogenic molecule when it reaches 10 PPM. In drinking water in a city in China, scientists measured 1.43 grams in 98.75 liters of water. What is the concentration of benzene in this water? Is it safe to drink?

$$PPM = \frac{\text{grams of benzene}}{\text{grams of solution}} \ \, \text{X 1,000,000} = \frac{1.43 \text{ g C}_6 \text{H}_6}{98750 \text{ g solution}} \ \, \text{X 1,000,000} = 14.5 \text{ PPM} \\ 3 \text{ SF}$$

No, this water is NOT SAFE to drink, it exceeds the safe limit

8. You have 1.0 liter of four different solutions: CaCl₂, (NH₃)₃PO₄, KCl, and C₆H₁₂O₆. Put them in order of lowest to highest boiling point.

Calcium chloride has 3 moles of ions
Ammonium phosphate has 4 moles of ions,
Potassium chloride has 2 moles of ions
Glucose is not ionic (but it is polar) and has just 1 mole of particles.
Less particles means a smaller Boiling Point elevation

Lowest BP to highest = $C_6H_{12}O_6$ KCl $CaCl_2$ (NH₃)₃PO₄

9. You have 5 beakers containing 400. mL each, of PURE H₂O, and 1.0 M K₃PO₄, NaCl, CHCl₃, and MgBr₂ solutions. Put them in order of highest → lowest freezing points.

Water has no particles in solution.

K₃PO₄ has 4 moles of particles

NaCl has 2 moles of particles

CHCl₃ is not ionic, but it is polar so it dissolves, it has 1 mole of particles

MgBr₂ has 3 moles of particles

More particles means greater freezing point depression, so...

HIGHEST FP is H₂O

followed by CHCl₃, NaCl, MgBr₂, and K₃PO₄ has the LOWEST FP (it has the most particles).

10. What is the freezing point and the boiling point in centigrade temperature of 1.00 liters of a 2.00 Molar aluminum nitrate solution?

1 mole Al(NO₃)₃ form 4 moles of ions. This 2.00 molar solution has 2 moles of Al(NO₃)₃ which forms into 8 moles of ions in solution.

The BP elevation = 100° C + $(8 \times 0.50^{\circ}$ C) = 104° C boiling point. The FP depression = 0° C - $(8 \times 1.86^{\circ}$ C) = -14.9° C 11. BONUS THINKING QUESTION: when 1.0 moles of urea (CH₄N₂O) dissolved in a 250. mL aqueous solution, what is the freezing point and the boiling point? (hint: urea is molecular)

Here you have 1 mole in 0.25 Liters of solution, so it has 4 moles per liter, therefore the BP elevation is X4. The BP is 102°C.

12. What is the vapor pressure of H_2O at 25°C?

If you replaced that pure water with sugary water, what would the approximate vapor pressure be of this solution?

Table H shows us it is approximately 4 kPa.

With sugar it would be LESS than 4 kPa.