

7

Do ideal gases have any particle mass, or any attraction between particles?

Can they ever become liquids?

The Noble Gases are in
Group 18
They are
$\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}, \mathrm{Rn}$

16

All gases are real. Ideal gases are used to discuss theory of gases. Examples of real gases include $\mathrm{O}_{2}, \mathrm{H}_{2}, \mathrm{He}, \mathrm{O}_{3}$ and CO_{2}

19
Any units for pressure can be used, kPa , atm or mm of Hg even psi. As long as they stay the same, so they cancel out.

11
The molar mass of He is $4 \mathrm{~g} / \mathrm{mole}$ 4 moles $\mathrm{He}=16$ grams.

10
The Halogens are the elements in Group 17

They are
$\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{A} \dagger$

15
Absolute Zero is 0 Kelvin or $-273^{\circ} \mathrm{C}$ all molecular motion stops (it's actually $273.15^{\circ} \mathrm{C}$)

1000 mL in 1 liter, 2400 mL in 2.4 liters.

Pressure and volume are inversely proportional.

20
Any units as long as they are the same on both sides of the equation.
(so they cancel out) ex: $L, m L, m^{3}$

25

Pressure X Volume always equals a CONSTANT.

$$
28
$$

with Constant Volume use this formula

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

24
Volume and temperature are DIRECTLY proportional.

23
Pressure + Temperature are
DIRECTLY proportional.

26
with Constant Pressure use this formula

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}
$$

