Naming Compounds Notes

What are ions, how and why do they form, what can they do together?

1.	All atoms are neutral because they have equal numbers of and	
	Helium has 2 protons and 2 electrons, sodium has protons andelectrons, mercury has 80 protons and 80 electrons.	
2.	All atoms have a unique number of protons, and all have the exact same number of	
3.	All atoms are always neutral. The =	
4.	All atoms are neutral, this is okay, but in order to bond together, atoms must first become	
	An ion is an atom that is no longer A metal atom will lose an electron, which makes it have a net charge of	
7.	It's still a metal, it's still the same metal, but now it is thecharge of +1, and it can bond.	_, it has a
8.	For exampleLithium atoms have and (it's neutral)	
9.	If lithium "loses" an electron, it has 2 protons and now only 2 electrons, which sums to net _	
10.	+ = +1 net charge	

11. Group 1 atoms	ATOM Electron configurations	ION Electron configuration and Ion Symbol	Ion becomes Isoelectric to
lithium	2-1		
sodium	2-8-1		
potassium	2-8-8-1		
rubidium	2-8-18-8-1		

12.	to a noble gas means that the ator	n has an electron configuration
	that matches a	
13.	Count the pumpkins, make fun of the superstitious! Ha!	
14.	Metals that happen to have the same electron configuration as a noble gas	noble gases, they form into metal ions,
15.	We use the noble gases to guide us, metals lose to a noble gas.	

1.6		F11: 41: 1 44							
16	Fill in this chart to see how group 2 metals become ions.								
	Atom	Atomic Electron config. From Periodic Table	Ionic Electron Configuration	Ion symbol with charge					
A	beryllium	2-2							
В	magnesium	2-8-2							
С	calcium	2-8-8-2							
D	strontium 2-8-18-8-2								
Е	barium	2-8-18-18-8-2							
F	radium	2-8-18-32-18-8-2							

17.	All g	group 2 metals		to become isoelectric to noble gases.		
	they	y do not are ions with a +2 cl em, like the noble ga	narge because they have "lost" ses.	2 elect		do they turn into gases, rfect electron orbital
Fill	in th	ne chart				
		Be ⁺²	is isoelectric to →		He helium	ı
		Mg^{+2}	is isoelectric to →			
		Ca ⁺²	is isoelectric to →			
		Sr ⁺²	is isoelectric to →			
		Ba ⁺²	is isoelectric to →			
2	0	Last metal of the da	ay (fill in this table)			
	Atom		Atomic Electron configuration from Periodic Table	configuration Configuration		Ion symbol with charge
A	\1	Aluminum	2-8-3	→		
			•			
21.					when they for	rm ions.
22.	Meta	als lose 1, 2, 3 electr	ons to form			ions.
23.	A_				has lost	electrons.
24.	Ano	ther name for a posit	ive ion is a			<u>_</u> .

25.	Nonmetals	·
26.	Nonmetals musta noble gas.	to become ISOELECTRIC to
27.	They will end up with a -1, -2, or	-3, depending if they gain 1, 2 or 3 electrons.
28.	Metals_	when they "lose" electrons.
	Nonmetals	when they "gain" electrons.
29.	In truth, no electrons are ever lost from metals to nonmetals.	or gained. <u>Electrons</u>
30.	The positive and negative ions for	m, at the same time,
	them to you later.	_,with no leftover electrons, or IOU electrons that I promise I'll give
31.	Ions do not have to form, but they first need to become ions.	
32.	There needs to be a	of electrons.
33.	Both the metal and nonmetal will	be to noble gases.
34.	Metals only	to become positive ions.
	Nonmetals only	to become negative ions

36. Fill in this table now.						
Atom symbol	Atomic electron configuration	Ionic electron configuration	Ion symbol (isoelectric to)			
Fluorine F	2-7					
Chlorine Cl	2-8-7					
Bromine Br	2-8-18-7					
Iodine I	2-8-18-18-7					
35. The bond metal ion & nonmetal ions is called an 37to become isoelectric to a noble gas, all become -1 ions.						
all become -1 ions. 38. Nonmetals gain electrons and form into						

39. The rest of the Periodic Table Anions: Group 16 (top three) Group 15 (last three)							
Atom symbol	Atomic electron configuration	Ionic electron config	Ion symbol (isoelectric to)				
O – oxygen	2-6						
S – sulfur	2-8-6						
Se - selenium	2-8-18-6						
N - nitrogen	2-5						
P - phosphorous	2-8-5						
As - arsenic	2-8-18-5						

End of class one (wow)

Naming Simple Monoatomic Ionic Compounds

40. Ionic compounds form when positive metal cations bond with negative								
41. They are w	41. They are wildly attracted to each other due to their							
which sim	42. Cations form when metals							
44. There is AL and if i	44. There is ALWAYS a of electrons, and if it's not a perfect transfer, nothing happens.							
45 T	here are 2 rules for naming simp	le monoatomic ionic compound	s. (think: NaCl)					
1 st name rule								
2 nd name rule								
The metals in g	roups 1, 2 and Al, are easy enou	gh to say, we already practiced t	them. Here come nonmetals.					
46.	N	О	F					
Say, and write the anion names	P	S	Cl					
in the proper boxes.	As	Se	Br					
These are the O	NLY anions that form in high so	Ι						

47. Fill in this table with the proper compound names					
Formulas	simple monoatomic ionic compound names				
LiBr					
CaO					
BeS					
MgO					
CsF					
SrS					
AlP					

48. Na⁺¹ and Cl⁻¹ combine in a ______, because (+1) + (-1) = 0

will form into

49. What happens if we try to combine something like calcium and chlorine?

Chlorine atom 2-8-7

Chlorine atom 2-8-7

Chlorine atom 2-8-7

Becomes...

51.	Fill	in	the	cations	and	anions.	then	write	formulas	and	names
\sim 1 ·			ULIU	Cations	ullu	will olio,		* * 1 1 0 0	TOTITION	wiiu	Halles

Cation	Anion	Formula of compound	Name of compound
Na ⁺¹	P ⁻³	Na ₃ P	Sodium phosphide
Ca ⁺²	S ⁻²		
Al^{+3}	P ⁻³		
Mg ⁺²	Br ⁻¹		
Li ⁺¹	O ⁻²		

John Dalton said atoms can combine together to form compounds in SIMPLE WHOLE NUMBER RATIOS.

52. An easy way to determine formulas... Let's bond some magnesium and bromine together.

Mg^{+2}	$\mathrm{Br}^{\text{-1}}$	\longrightarrow		

use the criss cross method!

53. Fill in tl	he cations	s & ar	nions, then criss cross to g	get the formulas, and then write the names
Cation	Anion		Formula of compound	Name of compound
Be ⁺²	F ⁻¹			
Sr ⁺²	Cl ⁻¹			
Ba ⁺²	N ⁻³			
K ⁺¹	I ⁻¹			
Al^{+3}	O ⁻²			
			atomic ionic compound good at this already (ds with proper names, two at a time
NaF	?			
Sr ₃ N	J ₂			
Al ₂ S	23			
BeC)			
Ba ₃ N	J_2			
Rb ₂ S	Se			
K ₃ P	•			
CsI				

55. The compounds formed when ions bond tog	gether are called
56. The bonds that form are called	
	s have HIGH
Naming Class #3 Objective: Transition ing and naming ionic compounds from the	al Metals become ions too. The rules for ionic bondne middle of the periodic table.
58. Group 1 all make examples: Li ⁺¹ , Na ⁺¹ , K ⁺¹ , etc.	, because all LOSE 1 electron in the outer orbital.
59. Group 2 all make +2 cations, because they a examples: Be +2, Mg +2, Ca +2, etc.	allfrom their outer orbital
60. Al makes	it forms the cation Al ⁺³
61. Group become isoelectric to the noble gases.	, because they all need to gain 1 electron to
62. Group	, they all need to gain 2 electrons to fill their outer orbital
63	-3 anions (you know why)
All of these, Group 1 and 2 metals, and a	luminum, and group 17, 16, and 15 all follow the
simple when becoming ions. They are truly s	imple and there are no exceptions here.
64. The TRANSITIONAL METALS, in	, and
	have sub-orbitals that can make
funky electron configurations.	

65.	Scandium makes a	See that +3 in the corner? That's what it means
66.	Yttrium is next, it also makes a	
	Peek at zinc, it only makes a	also.
67.	The transitional metals make the cations that are indicated follow the simple "isoelectric rule" like the metals we've	•
68	$Sc^{+3} + Cl^{-1} \rightarrow called$	

69	Atoms	Ions	Formula	name
ex	Na Cl	Na ⁺¹ Cl ⁻¹	NaCl	Sodium chloride
	Zr P			
	In F			
	Ag Cl			

70.	Titanium can make	

71. Look in box 22, Titanium can make _____

72. Let's look at each	of these atoms and determine what cations that they make:
V (#23)	
Cr (#24)	
Fe (#26)	
Cu (#29)	
Ga (#31)	
Cd (#48)	
Nb (#41)	
Hg (#80)	

73. Le	73. Let's see what happens when we combine chlorine to both gold cations (criss cross)							
Metal Atom	Nonmetal Atom	Cation	Anion	Compound Formula	Compound Name			
Au	C1	Au ⁺¹	Cl ⁻¹					
Au	C1	Au ⁺³	Cl ⁻¹					

75. Combine every type of manganese cation with bromine. Write the CATION CHARGES first, then the criss crossed formulas, and finally the stock names (roman numeral names) for each one.

Cation	Anion	Formula of compound	Stock Name of compound
Mn ⁺	Br ⁻¹		
Mn ⁺	Br ⁻¹		
Mn ⁺	Br ⁻¹		
Mn ⁺	Br ⁻¹		

76. Do the same for both copper cations bonding to oxygen						
Cation	Anion	Formula of compound	Stock Name of compound			
	O ⁻²					
	O ⁻²					

77. Last one	77. Last one (this is tricky). Combine tantalum (element 73) with sulfur.						
Cation	Anion	Formula of compound	Stock Name of compound				
	S ⁻²						

Naming (Class #4 Ob	jective: Table E, the po	lyatomic io	ns, making mor	re ionic comp	ounds!
78. Table I Poly m	E shows us the neans more tha	n one, here, atomic means a	atoms that are	stuck together.		
79. POLYA	ATOMIC IONS ave fun names	S can be that we never change.		or		·
80. Most o	of their names of the	end inlyatomic ions follow their o	Some own "rules".	don't. Why? Jus	t because.	
81. We wil	l start talking a	about AMMONIUM. Form	ula is			
Ammo	onium is	atom of bor	nded to	atoms of	, with a	_ charge.
82	+ _					
Cat	ions	MING RULES, alw		Never chan	nge their names.	
84. Cris	s cross the ic	ons to determine formul	as, then wri	te their proper 1	names.	
Cation	Anion	Formula of compour	nd	Stock Name	of compound	1
Na ⁺¹	C ₂ H ₃ O ₂ ⁻¹					
K ⁺¹	CN ⁻¹					
Mg^{+2}	CO ₃ -2					

85. Magnesium c	cation + 1	nydroxide ion \rightarrow n	nagnesium hydroxide	(write ions, then formula)
	_ +			
86		is correct. What's	wrong with these mis	stakes?
MgOH ₂				
MơO₂H₂				

87	cation	anions	formula	name
ex	Na ⁺¹	Cl ⁻¹	NaCl	Sodium chloride
a	Li ⁺¹	CrO ₄ -2		
b	Al ⁺³	ClO ⁻¹		
c	Mg ⁺²	SCN ⁻¹		
d	Ca ⁺²	MnO ₄ ⁻¹		

88	cation	anions	formula	name
a				beryllium phosphate
b				sodium hydrogen carbonate
c				ammonium nitrate
d				ammonium dichromate

89	cation	anions	formula	name
e				Bismuth (V) thiosulfate
f				Cobalt (III) chlorate

Objective:	Naming molecular compounds, writing molecular formulas, and determining how for form molecular compounds using the selected oxidation states.
	mpounds form when positive cations and negative anions combine in the proper ratios with a other, and form neutral compounds with each other because of opposite charge.
Molecula	ar compounds contain ar compounds form when 2 or more nonmetals bond together, in the proper ratios.
	cular Compounds
	vo or more nonmetal atoms bond together, they form a
93. A molecu	ule is the smallest part of a
94. Fill in	the compound names (there are NO METALS in molecular compounds)
CO_2	2
СО	
HCl	
NH_3	(nitrogen trihydride)
CH ₄	(carbon tetrahydride)
H_2O	(dihydrogen monoxide)
C_8H_1	(gasoline)

	old these atoms togethe			<u>.</u>
96. Co – means to _				
– valent refers to				
97. When 2 or more	ions bond, they make	ionic bonds, and they	form into	
We can abb	reviate that as		_	
98. Ionic compounds	do not form into			, they form's!
If you can remember	OR MOLECULAR CO what CO, CO ₂ , and H ₂ rbon dioxide + dihydro	O are, then the namin	_	eriodic table now)
99. NAMING R	ULES FOR MOLE		UNDS	FILL IN BELOW
	A single at	om? →		
1 st name rule				
	Multiple at	oms? →		
2 nd name rule	one or more a	atoms →		
100. List of the T	EN Latin Prefixes t	o memorize for m	olecular comp	ounds 1 to 10
1	2	3	4	5
6	7	8	9	10

101	Compound Name		Compound Name
HF		SF ₆	
CS ₂		N ₇ Cl ₃	
503		Cl ₂ O ₈	
CCI ₄		I ₄ O ₉	
PF ₅		N ₂ F ₁₀	

102. Write formulas for each compound	
Phosphorous tribromide	
Diphosphorous trioxide	
Oxygen difluoride	
Dihydrogen monoxide	
Nitrogen monoxide	
Carbon tetrafluoride	

102. Name these compounds	
NO ₂	
CI_4	
N_2O	
SO_3	
N_2O_5	
HC1	

103. On the periodic table there are	
--------------------------------------	--

Draw the "T" chart below. List the 2 oxidation state for hydrogen and the one for oxygen with signs.

