1 A saturated 100 mL solution of ammonium chloride at $80^{\circ} \mathrm{C}$ is cooled to $40^{\circ} \mathrm{C}$.
How many grams of solute precipitate out? $66 \mathrm{~g}-47 \mathrm{~g}=19$ grams (about)
2 A saturated 325 mL solution of ammonia at $20^{\circ} \mathrm{C}$ is warmed up to $40^{\circ} \mathrm{C}$.
How many grams of solute precipitate out?

3 A 100 mL solution of HCl at $40^{\circ} \mathrm{C}$ contains 20 g of solute. How much more solute can fit into this solution?
At $40^{\circ} \mathrm{C}$ this solution can hold about 63 grams of HCl . If it has 20 grams already dissolved, there is room for about 43 grams more.
4 A pond of $34,560 \mathrm{~L}$ contains 247 g of water strider bug urine. What's the PPM of bug urine in this solution?
$\mathrm{PPM}=\frac{\text { Mass of solute }}{\text { mass of solvent }} \times 1,000,000=\frac{247 \text { grams }}{34,560,000 \text { grams }} \times 1,000,000=7.15 \mathrm{PPM}$

5 What is the molarity of a saturated solution of sodium nitrate at $30^{\circ} \mathrm{C}$?
This solution holds 95 g in 100 mL . Using the molarity formula (but converting) we can figure this out.

6 A 3475 mL solution contains 573 grams of CuCl_{2}, what is the molarity of this solution?

$$
\begin{aligned}
& \frac{573 \mathrm{~g} \mathrm{CuCl}_{2}}{1} \times \frac{1 \mathrm{~mole} \mathrm{CuCl}_{2}}{134 \mathrm{grams}}=4.28 \mathrm{moles} \mathrm{CuCl}_{2} \\
& \mathrm{M}=\quad \frac{\text { \# moles }}{\text { Liters }} \times \frac{4.28 \text { moles }}{3.475 \text { Liters }}=1.23 \mathrm{M} \mathrm{CuCCl}_{2(\mathrm{AQ})}
\end{aligned}
$$

7 What is the freezing point of a 1.0 Liter $2.25 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{AQ})}$ solution?

Normal FP	minus	FP Depression	$=$	New FP	$2.25 \times 3=6.75$ moles
273 K	-	$(6.75 \mathrm{X} \mathrm{1.86} \mathrm{K)}$	$=$		
273 K	-	12.555	$=$	$260.445 \mathrm{~K} \quad=$	$260 . \mathrm{K}$ to nearest whole number Kelvin

8 What is the boiling point of one liter of $4.25 \mathrm{M} \mathrm{KNO}_{3(\mathrm{AQ})}$ solution?

Normal BP plus BP Elevation	$=$	New BP	$4.25 \times 2=8.50$ moles	
373 K	+	$(8.50 \mathrm{X} 0.50 \mathrm{~K})$	$=$	
373 K	+	4.25 K	$=$	$377.25 \mathrm{~K}=$

9 How many moles of NaCl are in 375 mL of saturated solution at $90^{\circ} \mathrm{C}$?
$90^{\circ} \mathrm{C} \frac{\mathrm{NaCl}}{\text { water }} \frac{40 \mathrm{~g}}{100 \mathrm{~mL}}=\frac{\mathrm{Xg}}{375 \mathrm{~mL}}=150 \mathrm{grams} \mathrm{NaCl} \rightarrow \quad \frac{150 \mathrm{~g} \mathrm{NaCl}}{1} \times \frac{1 \mathrm{~mole} \mathrm{NaCl}}{58 \mathrm{~g} \mathrm{NaCl}}=2.57$ moles
$\mathrm{M}=\frac{\text { moles }}{\text { Liter }} \frac{2.57}{0.375 \text { Liters }}=6.85 \mathrm{M} \mathrm{NaCl}_{(\mathrm{AQ})}$

10 Name the best and worst electrolyte. All are 1.0 liter solutions: A is BEST C is worst
A. $3.0 \mathrm{M} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2}$ [9 moles of ions]
B. $1.0 \mathrm{M}\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ [4 moles of ions]
C. $2.5 \mathrm{M} \mathrm{SrSO}_{4} \quad$ [no moles of ions!]
D. 4.0 M LiCl [8 moles of ions]
More Ions means conducts electricity better. Strontium sulfate is $I N S O L U B L E=$ no ions in solution

11 How to you prepare a $225 \mathrm{~mL} 1.33 \mathrm{M} \mathrm{LiNO}_{2(\mathrm{AQ})}$ from a stock solution of 4.68 M ?
$\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2} \rightarrow(4.68 \mathrm{M})\left(\mathrm{V}_{1}\right)=(1.33 \mathrm{M})(225 \mathrm{~mL})$
$\mathrm{V}_{1}=63.9 \mathrm{~mL}$ STOCK needed
Then fill with sufficient water to reach the 225 mL MARK

12 Compare the colligative properties of water with a solution of $1.0 \mathrm{M} \mathrm{ZnBr} r_{2(\mathrm{AQ})}$. No math, say higher or lower than water's numbers.

12	Water	$1.0 \mathrm{M} \mathrm{ZnBr}_{2(\mathrm{AQ})}$
Freezing point	273 K	LOWER
Boiling Point	373 K	HIGHER
Vapor Pressure	Low	LOWER

